"/>

一级做a免费观看大全视频,中文字幕乱码无限2019,日日麻批40分钟免费视频播放,精品专区性色av,国产性夜夜春夜夜爽,岛国三级片免费看久久,久久五月天和激情网

Aussie-linked research identifies key mechanisms of El Nino global weather events
Source: Xinhua   2018-07-26 10:33:56

SYDNEY, July 26 (Xinhua) -- Global El Nino weather events can be traced to two main atmosphere-ocean oscillations, a discovery that significantly improves the understanding of one of the world's most crucial and complex climate processes, according to latest Australian-linked research.

"We used to think of El Nino being fairly well explained by simple conceptual models," the study's co-author Dr Dietmar Dommenget, from Monash University's School of Earth, Atmosphere and Environment, said in a statement on Thursday.

"However, as the number of El Nino events we have observed has increased, its complex behavior has become more apparent, revealing interesting interactions with the atmosphere and other ocean basins," he said.

El Nino events are characterized by an unusual warming of the central to eastern equatorial Pacific, which can last up to one year, according to the university. Its remote "ripple effects" can not only be found in the atmosphere, but also in ocean currents, ecosystems, the occurrence of natural disasters and economies.

The study involved a group of 40 climate scientists from 11 countries analyzing large amounts of climate observations and computer model simulations covering temperature, wind and ocean current configurations to trace the main mechanisms behind El Nino.

Weather events and atmospheric circulation changes induced by temperature changes in the Indian and Atlantic oceans were found to be important factors behind the "constant excitation" of tropical Pacific climate systems, interactions that in turn helped fuel El Nino irregularities, said the researchers.

"Our study reveals that there is a hidden structure in the seemingly chaotic and unpredictable occurrence of El Nino events," said the study's lead author Axel Timmermann, from South Korea's Pusan National University. The findings have been published in scientific journal Nature.

The next step will be to conduct more comprehensive climate modeling studies in a more realistic setting to determine any shifts in El Nino characteristics amid climate change, said the researchers.

Editor: Li Xia
Related News
Xinhuanet

Aussie-linked research identifies key mechanisms of El Nino global weather events

Source: Xinhua 2018-07-26 10:33:56
[Editor: huaxia]

SYDNEY, July 26 (Xinhua) -- Global El Nino weather events can be traced to two main atmosphere-ocean oscillations, a discovery that significantly improves the understanding of one of the world's most crucial and complex climate processes, according to latest Australian-linked research.

"We used to think of El Nino being fairly well explained by simple conceptual models," the study's co-author Dr Dietmar Dommenget, from Monash University's School of Earth, Atmosphere and Environment, said in a statement on Thursday.

"However, as the number of El Nino events we have observed has increased, its complex behavior has become more apparent, revealing interesting interactions with the atmosphere and other ocean basins," he said.

El Nino events are characterized by an unusual warming of the central to eastern equatorial Pacific, which can last up to one year, according to the university. Its remote "ripple effects" can not only be found in the atmosphere, but also in ocean currents, ecosystems, the occurrence of natural disasters and economies.

The study involved a group of 40 climate scientists from 11 countries analyzing large amounts of climate observations and computer model simulations covering temperature, wind and ocean current configurations to trace the main mechanisms behind El Nino.

Weather events and atmospheric circulation changes induced by temperature changes in the Indian and Atlantic oceans were found to be important factors behind the "constant excitation" of tropical Pacific climate systems, interactions that in turn helped fuel El Nino irregularities, said the researchers.

"Our study reveals that there is a hidden structure in the seemingly chaotic and unpredictable occurrence of El Nino events," said the study's lead author Axel Timmermann, from South Korea's Pusan National University. The findings have been published in scientific journal Nature.

The next step will be to conduct more comprehensive climate modeling studies in a more realistic setting to determine any shifts in El Nino characteristics amid climate change, said the researchers.

[Editor: huaxia]
010020070750000000000000011100001373492921


一级做a免费观看大全视频,中文字幕乱码无限2019,日日麻批40分钟免费视频播放,精品专区性色av,国产性夜夜春夜夜爽,岛国三级片免费看久久,久久五月天和激情网 国产视频观看91 国产00在线视频国产 国产综合色视频久久久 久久成人国产精品一区二区 高清无码免费黄色网站